The Application of Sio₂Nanoparticles for Anionic Dye Removal from Aqueous Solution

Faranak Shaghayeghi Toosi^a, Malihesadat Hosseiny^b, Ali Joghataei^{c*}, Foad Shaghayeghi Toosi^d

^aDepartment of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Khorasane Razavi, Iran. ^bDepartment of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Khorasane Razavi, Iran. ^cStudent Research Committee, Qom University of Medical Sciences, Qom, Iran. ^dYoung Researchers and Elite Club, Neyshabur Branch, Islamic Azad University, Neyshabur, Khorasane Razavi, Iran.

*Correspondence should be addressed to Mr. Ali Joghataei, Email: joghataei69@yahoo.com

A-R-T-I-C-L-EI-N-F-O	A-B-S-T-R-A-C-T
Article Notes:	Background & Aims of the Study: Dyes are one of the widespread chemicals which may have
Received: Oct. 18, 2016	many adverse effects on life cycle. Thus, this study was conducted to survey the RB19 dye
Received in revised form:	removal efficacy from aqueous solution, using the SiO ₂ nanoparticles.
Feb 12 2017	Materials and Methods: This study was an experimental-lab study. The batch adsorption
Accepted: Feb 10 2017	affective personators including contact time pH adsorbent decages initial PR10 dva
Available Onlines Eab 28	concentration and temperature.
Available Olillie: Feb. 28,	Results: the results of this study showed that the increasing of contact time, adsorbent dosage
2017	and temperature (up to 30) can positive effect on dye removal efficiency and can develop the
	dye removal efficiency, while the increasing of pH and RB19 dye concentration decrease the dye
Keywords:	removal efficiency. The maximum dye removal efficiency was observed to be 95.72% at pH=5
Adsorption	and temperature of 30. Furthermore, the equilibrium studies of the RB19 dye adsorption depicted
SiO ₂ nanoparticles	that the Langmuir isotherm and pseudo-second-kinetic models was successfully able to describe
RB19 dye	the equilibrium data.
Kinetic	Conclusion: It can be concluded that SiO_2 nanoparticles are excellent adsorbent to remove the
Isotherm	dyes from aqueous solution.

Please cite this article as: Shaghayeghi Toosi F, Hosseiny M, Joghataei A, Shaghayeghi Toosi F.The Application of Sio₂ Nanoparticles for Anionic Dye Removal from Aqueous Solution. Arch Hyg Sci 2017;6(2):136-144.

Background

Historically, the development of human life style has been associated with the need to large amount of energies and chemicals that might be destructive and hazardous for the environment (1-2). The dyes are of major class of the chemicals which have various target industries such as textiles, leather, paper, printing and cosmetics but the highest amount of dyes is used in textile industries (3-4). Dyes are drastically used in these industries and can generate the colorful wastewater (5). This produced wastewater which can simply release into environment and be considered as a major risk for various type of life in environments (6-7). Among various types of dyes, the reactive dyes are identified as widely used dyes to colorize the fibers (8). A large amount of these dyes (50%) is lost during dying and it is obvious that great volume of colorful wastewater is producing by this part (9). The toxicity and aesthetic risks of the dyes has been reported in various literatures. They are supposed to participate in some diseases such

as dermatitis and cancers, etc (10-11). Thus, the colorful effluents should be considered as one major risk and best methods should be applied to alleviate the dangerous effects of these chemical to save the human and environment. Different approaches such as adsorption, electrochemical, membrane separation, flocculation-coagulation, reverse osmosis, ozone oxidation, and biological treatments have been used to remove the dyes. Although, these methods was able to successfully remove the dyes; however, the popularity of these methods are reducing due to their cost and complexity (12-13). The nanotechnology and use of the nano-material one of is the effective innovations to remove the pollutants which have gained many interesting among the societies. The nanoparticles have been used in various studies to remove a number of pollutants such as dyes (14-15), antibiotics (16), heavy metals (17-18), etc. Those studies showed that the nanoparticles has considerable efficacy in removal of mentioned pollutants. This substantial efficacy is due to the unique features of these materials including high adsorption capacity, simplicity in operation, rapid adsorption process, etc (19).

Aims of the study:

The aim of the present work was to study the SiO₂ nanoparticles ability in reactive blue 19 dye removal. Also, this study was conducted to determine the effect of the contact time, pH, temperature, dye concentration and SiO₂ nanoparticles dosage on dye removal efficiency.

Materials & Methods

Chemical material:

The Reactive Blue 19 (RB19) dye was provided from AlvanSabet Corporation, Hamadan, Iran. The chemical characteristics and structure of RB19 dye is represented in the Table 1.

Shaghayeghi Toosi F et al. / Arch Hyg Sci 2017;6(2): 136-144

RB19 dye (20)				
Chemical structure				
Molecular	$C_{22}H_{16}N_2Na_2O_{11}S_3$			
formula				
Molecular weight	626.54			
(g/mol)				
Maximum	592			
wavelength(nm)				

Table 1) the chemical structure and properties of

Adsorbent properties:

The SiO₂ nanoparticles were purchased from Research Institute of Petroleum Industry (RIPI), Tehran, Iran which was used to study the adsorption characteristics of RB19 dye from aqueous solutions. The outer diameter of SiO₂ nanoparticles used in this study was in range of 10 to 20 nm. In addition, the specific surface area of SiO₂ nanoparticles was reported to be greater than $210m^2/g$ and the mass ratio of the amorphous carbon of SiO₂ nanoparticles was lesser than 10%. The SEM images of this adsorbent were provided, using a Philips XL30 scanning electron microscope (SEM). This image (Fig.1) shows the porous surface of this adsorbent and reveals that it can be proper adsorbent for RB19 dye removal.

Figure 1) the SEM image of the SiO₂ nanoparticle

Batch adsorption studies:

At the first, a stock solution of RB19 dye (1000mg/L) was prepared and other desired solution with different initial dve concentrations were prepared by diluting of the stock solution. The batch adsorption system was utilized to study the influence of the

Archives of Hygiene Sciences

Volume 6, Number 2, Spring 2017

studied factors on adsorption process including contact time (10-180min), pН (3-11), temperature (20-60 °C), adsorbent dose (0.2-1.6g/L) and initial concentration of dye (10-500mg/L). All of the experiments were performed in 250mL flask Erlenmayer. 100ml of dye solution with different concentration was poured into the flask and SiO₂ nanoparticles with certain dose were added. The pH of solutions was regulated, using 0.1N HC1 or 0.1N NaOH. Then, prepared samples were mixed, using magnetic stirrer at 180rpm. The experiments were performed by varying of target parameter and in constant values of other parameters to obtain the optimum amount of each parameter. After mixing the samples, they were filtered and the final RB19 dye concentration in solution was determine by the UV-Visible spectrophotometer (DR-4000) at a wavelength of 592nm (20). The equilibrium experiments of adsorption process were conducted after determination of equilibrium time to survey the effect of adsorbent mass on dye removal for obtaining the adsorption isotherms. The following equation is used to calculate the amount of adsorption at equilibrium, $q_e (mg/g)$: $q_e = \frac{(C_0 - C_e)V}{M}$

Where; C_0 and C_e (mg/L) are the initial and equilibrium RB19 dye concentrations in solution, respectively. V (L) is the volume of the solution and W (g) is the mass of dry sorbent used.

The dye removal percentage is calculated as follows:

 $R_{=}^{(C_0-C_e)_{100}}$ C_0

(1)

Results

A

Effect of SiO₂ nanoparticles dosage:

In this work, the effect of the SiO_2 nanoparticles was studied by varying of this parameter in range of 0.2 to 1.6g/L. the results is represented in figure 2. This figure indicated that the increasing of the adsorbent dose can

develop the RB19 dye removal efficiency. It is clear from the results that the RB19 dye removal efficiency is increased from 44.65% to 95.63% by the increasing of SiO₂ nanoparticles dose from 0.2 to 1.6g/L but the dye adsorption capacity is decreased from 74.41 to 14.94mg/g.

Figure 2) The effect of adsorbent dosage on RB19 dye removal efficiency (contact time=90min, pH=5, initial dye concentration= 25mg/L, temperature=30°C)

Effect of pH:

The effect of pH on RB19 dye removal efficiency was studied in different pH values of solution in range of 3to 11 and the results are represented in figure 3. As it can be seen, the highest RB19 dye removal efficiency was observed at the pH in range of 3 to 6 and then it is gradually decreased.

Figure 3)The effect of pH on RB19 dye removal efficiency (contact time=90min, adsorbent dosage=0.75g/L, initial dye concentration=25mg/L, temperature=30°C)

Effect of contact time and temperature: The contact time and temperature are other effective parameters on dye removal efficiency.

rchives of Hygiene Sciences	Volume 6, Number 2, Spring 2017		
© 2017 Publisher: Research Center for Environmental Pollutants, Q	om University of Medical Sciences. All rights reserved.		

The effect of these parameters was evaluated by variation of the contact time (10-180min) and temperature (20-60°C). The results of this study are shown in figure 4. As it can be seen, the dye removal efficiency increased by increasing the contact time and temperature. The best dye removal efficiency was 95.72% at the 30. In addition, the dye removal efficiency is significant at the initial time of the adsorption process and it remains constant after 90 min.

The effect of initial RB19 dye concentration

The initial dye concentration is another parameter which can influence the adsorption process. The effect of this parameter was investigated by the variation of initial concentration of RB19 dye (10-500mg/L), using the constant amount of other parameters. The results of this study were brought in figure 5. This figure demonstrates that increasing the dye concentration has negative effect on dye removal efficiency.

Figure 5)The effect of initial dye concentration on RB19 dye removal efficiency (contact time=90min, adsorbent dosage=0.75g/L, pH=5, initial RB19 dye concentration=50mg/L, temperature=30°C)

Isotherm studies

The equilibrium data of the RB19 dye adsorption were fitted on the Langmuir and Freundlich models to understand the best models to best design of the process and to optimize the use of nanoparticle.

Langmuir Isotherm:

The Langmuir isotherm is resulting on the theory of mono-layer adsorption on a homogenous surface. This equation of this isotherm can express by following equation (21-22):

$$C_e/q_e = 1/q_m K_L + C_e/q_m \tag{3}$$

Where, C_e (mg/L) and q_e (mg/g) are the concentration of RB19 and the amount of RB19 dye adsorbed onto SiO₂ nanoparticles at equilibrium, respectively. q_m is indicates the maximum monolayer adsorption capacity (mg/g) and K_L is the Langmuir constant (L/mg).

Freundlich isotherm:

The Freundlich isotherm describes the adsorption on heterogeneous surfaces. The following equation is related to the Freundlich model isotherm (23-24):

$$Log q_e = log C_e + log K_f$$
 (4)

Where q_e is the RB19 dye concentration on the SiO₂ nanoparticles (mg/g) at equilibrium, C_e is

Archives of Hygiene Sciences

Volume 6, Number 2, Spring 2017

the concentration of RB19 dye in solution at equilibrium (mg/L) and K_f is the Freundlich constant. The results of the isotherm studies are presented in Table 2.

Kinetic studies:

In this study, the pseudo-first-kinetic and pseudo-second-kinetic models were applied. These models are useful to determine the rate of the adsorption process. The pseudo-first-order rate equation is expressed as following (25-26): $log(q_e-q)=logq_e-k_1/2.3$ (5) Where; q_e and q are related to RB19 dye adsorption capacity (mg/g) onto the SiO₂ nanoparticle (mg/g) at equilibrium and at time t

(min), respectively; and k_1 is the constant rate of the pseudo-first-order kinetic model (min⁻¹). The pseudo-second-order model equation is calculated by below equation (27): $dq/dt = k_2 (q_e - q)^2$ (6) Where; K_2 is the constant rate related to the second order model (g/mg/min). The plots of log (q_e-q) versus (t) are used to calculate the k_1 while the k_2 is calculated from the plots of t/q_t against (t).

Table 2) Isotherm	parameters related to	to the reactive	blue 19 dye a	adsorption on to Si	D₂ nanoparticles
	A			L	

		Langmuir			Freundlich	
temperature	q _m (mg/g)	$K_L(L/mg)$	\mathbb{R}^2	n	K _f	\mathbb{R}^2
20°C	13.4	0.626	0.945	3.065	39.38	0.8597
30° C	14.37	0.816	0.9466	3.82	34.97	0.8304
40° C	12.48	0.516	0.9407	2.63	43.54	0.8729
50° C	11.5	0.432	0.9349	2.28	48.65	0.8803
60°C	10.61	0.368	0.9297	2.01	55.03	0.8877

Table 3) Kinetic parameters related to the ad	sorption of reactive blue 19 dye on to SiO ₂ nanoparticles
Dooudo first kinotio	Decudo second kinetia

Pseudo-nrst kinetic		Pseudo-second-kinetic			
q _e (mg/g)	$K_1(min^{-1})$	\mathbb{R}^2	q _e (mg/g)	K ₂ (mg/g.min)	\mathbb{R}^2
104.9	0.17733	0.763	3.46	0.023	0.9985
			higher d	va romaval afficia	nou by inora

Discussion

Effect of SiO₂ nanoparticles dosage:

The adsorbent dosage has identified as most effective parameters on the adsorption of pollutants. As it was detected, although the dye removal efficiency increases by increasing the adsorbent dosage however the adsorption capacity decreases. It is expressed that the increasing of the adsorption surface site can be the logical reason for the higher dve removal efficiency. In contrast, the higher unsaturated adsorption sites on adsorbent surface are attributed to decreasing the adsorption capacity (28). Mahmoodi et al conducted a study to investigate the nanoparticles ability in direct dyes efficiency. They have found that the dye removal efficiency is developed by increasing the adsorbent dosage while the adsorption capacity decreased. They declared that the higher dye removal efficiency by increasing the adsorbent dosage can be due to increase the adsorbent surface and the accessibility of more adsorption sites. They have also reported that the declining of the adsorption capacity is due to overlapping or aggregation of adsorption sites which is led to the decrease the available total adsorbent surface area and to increase in diffusion path length (29).

Effect of pH:

This parameter plays an important role in adsorption processes. The above results showed that the RB19 dye removal efficiency is higher in acidic pH and the increasing of pH is led to decline the dye removal efficiency. Since the RB19 dye belongs to anionic dyes group; therefore, its molecules is negatively charged. As it is known, the surface of the adsorbent is positively charged in acidic pH; thus, the electrostatic attraction occurs between the

Archives of Hygiene Sciences	Volume 6, Number 2, Spring 2017
© 2017 Publisher: Research Center for Environmental Pollutants.	Oom University of Medical Sciences. All rights reserved.

negatively charged molecules of dye and the surface of the adsorbent which can increase the removal efficiency. The similar results for dye removal by other adsorbents were observed in other studies (30-31). The adsorption of reactive dye was evaluated by Asadi et al; they observed that the pH has an important role in the dye removal efficiency. they has also observed that the higher dye removal efficiency is obtained at pH=3 which is in consistent with our study (32).

Effect of contact time and temperature:

The contact time and temperature are other parameters which are influencing the dye adsorption process. The obtained results revealed that both two parameters have direct effects on RB19 dye removal and they can enhance the dye removal that they are similar to other studies (33-34). The increasing of dye removal efficiency with temperature indicates that the RB19 dye adsorption is endothermic naturally (35). The higher dye removal efficiency at initial time of the process is related to the large number of the adsorption surface site at the start of this process. As it was observed that the dye adsorption process reached to equilibrium within 90 min (36). Ahuja et al has conducted a study to evaluate the dye from aqueous solution, using zero valent iron nanoparticles and observed that the contact time has a significant effect on dye removal efficiency. They found that dye removal efficiency, which enhanced by increasing the contact time, is agree with the results of this study (37).

The effect of initial RB19 dye concentration:

The study of the effect of concentration of RB19 dye indicated that the removal efficiency decreases by increasing the initial dye concentration. The dye removal efficiency is higher at the lower dye concentration but it decrease by increasing the dye concentration. The highest RB19 dye removal was observed to be 96.45% for 50mg/L dye but it is clear that the lowest dye adsorbed per adsorbent mass is 12.86mg/g. The initial dye concentration of

selected 50 mg/Lwas as an optimum concentration. the lowest dye removal and highest dye adsorbed per adsorbent mass was observed to be 68.27% and 455.133mg/g, respectively which obtained for dve concentration of 500mg/L. these results are in consistent with the results of other studies (38). Behnajady et al has surveyed the ability of TiO₂-P₂₅ nanoparticles for the adsorption of AR27 dye and they found that the dye elimination efficacy decreased from 97% to 39% with increasing of initial concentration of AR27 from 10 to 80mg/L. they reported that this event can be due to the saturation of adsorption sites onto TiO₂-P₂₅ nanoparticles (39).

Isotherm studies:

As it was observed in above, Langmuir and Freundlich models were applied to study the RB19 dye adsorption isotherm onto SiO₂ nanoparticles. The results of isotherm studies were presented in table 2. The q_{max} and k_L are determined from the plot of (C_e/q_e) versus C_e and the K_f and n are calculated from the plot of log qe versus log Ce. The higher amount of regression coefficient (R^2) is indicative of the better model to describe the equilibrium data. As it can be seen in table 2, the equilibrium data were studied at 20, 30, 40, 50 and 60 °C. The R^2 values achieved from the Langmuir model were higher than its values for Freundlich in all temperatures which indicated that the equilibrium data are best fitted on the Langmuir model. It is also observed that the amount of R^2 for the Langmuir model at 30 °C is greater than other R^2 values of this model which indicates that the highest monolayer adsorption capacity obtained from the Langmuir model in this temperature (14.37mg/g). These results are in consistent with the results of other studies (40-41).

Kinetic studies:

As it was observed, the studying of the kinetic of RB19 dye adsorption was performed pseudofirst-kinetic and pseudo-second-kinetic models and the results obtained from these studies were

Volume 6, Number 2, Spring 2017

represented in table 3. As it can be seen, the R^2 obtained from the pseudo second-order kinetic model is higher than this value for the pseudo-first-kinetic which means that the uptake process follows the pseudo-second-order ($R^2>0.998$) and the data are best fitted on the pseudo second-kinetic models. These results are agreed with the results of other studies (42-43).

Conclusion

In this work, RB19 dye removal efficiency by SiO₂ nanoparticles were evaluated in batch adsorption system. The effect of parameters including contact time, pH, adsorbent dosages, initial RB19 dye concentration and temperature were investigated and observed to be effective on the adsorption process. It was distinguished that the increasing of contact time, adsorbent dosage and temperature (up to 30) had positive effects on dye removal efficiency and can increase the dye removal efficiency while the increasing of pH and dye concentration decrease the dye removal efficiency. The optimum amount of contact time, pH, adsorbent dosage, dye concentration and temperature was found to be 90 min, 5, 0.75g/L, 50mg/L and 30, respectively. The highest dye concentration was observed to be 95.72%. The equilibrium data were best fitted on pseudo-second kinetic and Langmuir isotherm model. The highest monolayer adsorption capacity (14.37mg/g) was obtained at 30 °C. It can be concluded that SiO₂ nanoparticles have a significant potential for dye removal from aqueous solution.

Footnotes

Acknowledgments:

The authors are grateful from the Neyshabur Islamic Azad University and all who support us in this research.

Conflict of Interest:

The authors declared no conflict of interest.

References

1. Azarpira H, Mahdavi Y, Khaleghi O, Balarak D. Thermodynamic Studies on the Removal of Metronidazole Antibiotic by Multi-Walled Carbon Nanotubes. Der Pharmacia Lettre 2016;8(11):107-113.

2. Nazari Sh, Yari AR, Mahmodian MH, Tanhaye Reshvanloo M, Alizadeh Matboo S, Majidi G et al. Application of H_2O_2 and H_2O_2 /Fe0 in removal of Acid Red 18 dye from aqueous solutions. Arch Hyg Sci 2013;2(3):104-110

3. Sobhanardakani S, Zandipak R. Removal of Anionic Dyes (Direct Blue 106 and Acid Green 25) from Aqueous Solutions Using Oxidized Multi-Walled Carbon Nanotubes. Iranian J Health Sci 2015;3(3):48-57.

4. Zazouli MA, Yousefi Z, Yazdani-Charati J, Mahdavi Y. Application of AzollaFiliculoides Biomass in Acid Black 1 Dye Adsorption from Aqueous Solution. Iranian J Health Sci 2014;2(3):24-32.

5. Zazouli MA, Moradi E. Adsorption Acid Red18 Dye Using Sargassum Glaucescens Biomass from Aqueous Solutions. Iranian J Health Sci2015;3(2):7-13.

6. Jafari Mansoorian H, Jonidi Jafari A, Yari AR, Mahvi AH, Alizadeh M, Sahebian H. Application of Acaciatortilis Shuck as of Low-cost Adsorbent to Removal of Azo Dyes Reactive Red 198 and Blue 19 from Aqueous Solution. Arch Hyg Sci 2014;3(1):1-11.

 Shokri A. Application of Sonocatalyst and Sonophotocatalyst for Degradation of Acid Red 14 in Aqueous Environment. Arch Hyg Sci 2016;5(4):229-235.
Dehghani M, Shabestari R, Anushiravani A, Shamsedini N. Application of Electrocoagulation Process

Shamsedini N. Application of Electrocoagulation Process for Reactive Red 198 Dye Removal from the Aqueous Solution. Iranian J Health Sci 2014;2(2):1-9.

9. Mohd Salleh MA, Mahmoud DK, Wan Abdul Karim WA, Idris A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination 2011;280(1–3):1-13.

10. Hema M, Arivoli S. Adsorption Kinetics and Thermodynamics of Malachite Green Dye Unto Acid Activated Low Cost Carbon. J Appl Sci Environ Manag 2008;12(1):43-51.

11. Balarak D, Mahdavi Y. Experimental and Kinetic Studies on Acid Red 88 Dye (AR88) Adsorption by Azolla filiculoides. Biochem Physiol 2016;5:190.

12. Seow TW, Lim CK. Removal of Dye by Adsorption: A Review. Int J Appl Eng Res 2016;11(4):2675-2679.

13. Shariati-Rad M, Irandoust M, Amri S, Feyzi M, Ja'far F. Removal, preconcentration and determination of methyl red in water samples using silica coated magnetic nanoparticles. J Appl Res Water Wastewater 2014;1(1):6-12.

Archives of Hygiene Sciences

Volume 6, Number 2, Spring 2017

Shaghayeghi Toosi F et al. / Arch Hyg Sci 2017;6(2): 136-144

• The Application of Sio₂ Nanoparticles for Anionic...

14. Kale RD, Kane BP. Colour removal using nanoparticles. Textiles Clothing Sustain 2016;2(1):1-7.

15. Wang Z, Yu C, Fang C, Mallavarapu M. Dye removal using iron–polyphenol complex nanoparticles synthesized by plant leaves. Environ Technol Innov 2014;1–2:29-34.

16. Balarak D, Mahdavi Y, Kord Mostafapour F. Application of Alumina-coated Carbon Nanotubes in Removal of Tetracycline from Aqueous Solution. British J Pharm Res 2016;12(1):1-11.

17. Mahdavi S, Jalali M, Afkhami A. Heavy metals removal from aqueous solutions by Al_2O_3 nanoparticles modified with natural and chemical modifiers. Clean Technol Environ Policy 2015;17(1):85-102.

18. Ahmadi A, Heidarzadeh S, Mokhtari AR, Darezereshki E, Harouni HA. Optimization of heavy metal removal from aqueous solutions by maghemite (γ -Fe₂O₃) nanoparticles using response surface methodology. J Geochem Explor 2014;147(Part B):151-8.

19. Balarak D, Mahdavi Y, Joghatayi A. Adsorption of Fluoride using SiO2 nanoparticle as Adsorbent. Int J Eng Technol Manag Res 2015;2(2):1-9.

20. Balarak D, Mahdavi Y, Joghataei A. The application of low-cost adsorbent for reactive blue 19 dye removal from aqueous solution: Lemna minor. Arch Hyg Sci 2015;4(4):199-207.

21. Madrakian T, Afkhami A, Ahmadi M. Adsorption and kinetic studies of seven different organic dyes onto magnetite nanoparticles loaded tea waste and removal of them from wastewater samples. Spectrochim Acta A Mol Biomol Spectrosc 2012;99:102–9.

22. Joghatayi A, Mahdavi Y, Balarak D. Biosorption of Reactive blue 59 dyes using dried Azolla filiculoides biomass. Scholars J Eng Technol 2015;3(3B):311-318.

23. Elmorsi TM. Equilibrium isotherms and kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. J Environ Prot 2011;2(6):817-827.

24. Hameed BH, Mahmoud DK, Ahmad AL. Equilibrium modeling and kinetic studies on the adsorption of basic dye by a low-cost adsorbent: Coconut (Cocos nucifera) bunch waste. J Hazard Mater 2008;158(1):65-72.

25. Amela K, Hassen MA, Kerroum D. Isotherm and Kinetics Study of Biosorption of Cationic Dye onto Banana Peel. Energy Procedia 2012;19:286-95.

26. Sivakumar S, Muthirulan P, Meenakshi Sundaram M. Adsorption kinetic and isotherm studies of Azure A on various activated carbons derived from agricultural wastes. Arabian J Chem. In Press, Corrected Proof.

27. Zazouli MA. Balarak D. Mahdavi Y. Application of Azolla filiculoides biomass for 2-Chlorophenol and 4-

Chrorophenol Removal from aqueous solutions. Iranian J Health Sci 2013;1(2):43-55.

28. Dehghani MH, Norozi Z, Nikfar E, Vosoghi M, Oskoei V. Investigation of Nano Alumina Efficiency for Removal of Acid Red 18 Dye from Aqueous Solutions. Alborz Univ Med J 2013;2(3):167-174. (Full Text in Persian)

29. Mahmoodi NM, Abdi J, Bastani D. Direct dyes removal using modified magnetic ferrite nanoparticle. J Environ Health Sci Eng 2014;12:96.

30. Shariati Sh, Faraji M, Yamini Y, Rajabi AA. Fe3O4 magnetic nanoparticles modified with sodium dodecyl sulfate for removal of safranin O dye from aqueous solutions. Desalination 2011;270(1-3):160–165.

31. Sheikh Mohammadi A, Sardar M, Mohammadi A, Azimi F, Nurieh N. Equilibrium and Kinetic Studies on the Adsorption of Acid Yellow 36 Dye by Pinecone. Arch Hyg Sci 2013;2(4):158-164.

32. Asadi F, Dargahi A, Almasi A, Moghofe E. Red Reactive 2 Dye Removal from Aqueous Solutions by Pumice as a Low-Cost and Available Adsorbent. Arch Hyg Sci 2016;5(3):145-52.

33. Abou-Gamra ZM, Ahmed MA. TiO2 Nanoparticles for Removal of Malachite Green Dye from Waste Water. Adv Chem Eng Sci 2015;5(3);373-388.

34. Balarak D, Mahdavi Y, Ghorzin F, Sadeghi S. Biosorption of acid blue 113 dyes using dried Lemna minor biomass. Sci J Environ Sci 015;4(7):152-158.

35. Sohrabi MR, Mansouriieh N, Khosravi M, Zolghadr M. Removal of diazo dye Direct Red 23 from aqueous solution using zero-valent iron nanoparticles immobilized on multiwalled carbon nanotubes. Water Sci Technol 2015;71(9):1367-1374.

36. Puentes-Cárdenas IJ C-CG, Flores-Ortiz CM, et al. Adsorptive Removal of Acid Blue 80 Dye from Aqueous Solutions by $Cu-TiO_2$. J Nanomater 2016;2016:1-15

37. Ahuja N, Chopra AK, Ansari AA. Removal of Colour from Aqueous Solutions by using Zero Valent Iron Nanoparticles.IOSR J Environ Sci Toxicol Food Technol 2016;10(1):04-14.

38. Mahmoodi NM, Soltani-Gordefaramarzi S. Dye Removal from Single and Quaternary Systems Using Surface Modified Nanoparticles: Isotherm and Kinetics Studies. Prog Color Colorants Coat 2016;9(2):85-97.

39. Behnajady MA, Yavari Sh, Modirshahla N. Investigation on adsorption capacity of TiO2-P25 nanoparticles in the removal of a mono-azo dye from aqueous solution: A comprehensive isotherm analysis Chem Ind Chem Eng Q 2014;20(1):97–107.

40. Salem A-NM, Ahmed MA, El-Shahat MF. Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles. J Mol Liq 2016;219:780-788.

41. Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C. Removal of Reactive Red

Archives of Hygiene Sciences

Volume 6, Number 2, Spring 2017

195 from aqueous solutions by adsorption on the surface of TiO_2 nanoparticles. J Hazard Mater 2009;170(2–3):836-44.

42. Zeng S, Duan S, Tang R, Li L, Liu C, Sun D. Magnetically separable $Ni_{0.6}Fe_{2.4}O_4$ nanoparticles as an effective adsorbent for dye removal: Synthesis and study on the kinetic and thermodynamic behaviors for dye adsorption. Chem Eng J 2014;258:218-28.

43. Asfaram A, Ghaedi M, Hajati S, Goudarzi A, Dil EA. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe_3O_4 nanoparticle-loaded activated carbon. Ultrasonics Sonochem 2017;34:1-12.